Mearl Geofoam®
Low-Density Cellular Concrete Solutions
For Geotechnical Construction

Determining the proper mixture of cement, water and foam to insure quality

Range of uses

- Replaces unstable soil to reduce subsidence of roadways, bridge piers, buildings and other structures.
- Backfill (seismic grout) for tunnels, water lines and sewers.
- Provides shock absorption in earthquake zones (cellular concrete is recommended by the U.S. Bureau of Reclamation in fault zones).
- Reduces loads above underground structures.
- Fills voids within silos, abandoned mines, underground tanks and pipelines.
- Reduces hydrostatic pressure on retaining walls.
- Absorbs shock waves.

Benefits

- Provides insulation (can contain up to 80% air).
- Rapid consolidation.
- Economical load reduction versus alternative granular or concrete backfill.
- Long-lasting and stable.
- Positively fills (flows to fill all spaces available).
- Absorbs shock waves.
- Lightweight.
- High slump (virtually self-leveling).
- Broad range of densities and compressive strengths.
- Excellent freeze-thaw resistance.
- Low water absorption and low permeability.

Features

Total Technical Support
Cellular Concrete Solutions supports the use of Geofoam cellular concrete with a full range of formulating and application services. Our experts work closely with engineers and contractors, to help them ensure that each cellular concrete installation is properly designed and executed. This includes preparing trial batches of mixes meeting a contractor’s desired specifications, and advising or modifying the equipment that generates the cellular concrete. Training of specially trained concrete subcontractors and site crews help ensure that performance is immunity.

Mearl Geofoam®
Features

- Geofoam, an engineered foaming agent with the consistency of shaving cream, before it is mixed with cement slurry.
- Mearl Geofoam® replaces unstable soil to reduce subsidence of roadways, bridge piers, buildings and other structures.
- Backfill (seismic grout) for tunnels, water lines and sewers.
- Provides shock absorption in earthquake zones (cellular concrete is recommended by the U.S. Bureau of Reclamation in fault zones).
- Reduces loads above underground structures.
- Fills voids within silos, abandoned mines, underground tanks and pipelines.
- Reduces hydrostatic pressure on retaining walls.

For more information on the use of Geofoam low-density cellular concrete, contact:

Cellular Concrete Solutions™
Mearlcrete Division
7202 Snowdrift Road, Suite 102
Allentown, PA 18106
Tollfree 888-235-5015
Tel 610-398-7833
Fax 610-398-7050
Email: info@cellular-concrete.com
Website: www.cellular-concrete.com

Cellular Concrete Solutions™ seeks to present reliable information concerning the composition, properties and use of its products; however: (1) all advice concerning selection and use of any product is provided AT NO CHARGE AND WITH NO WARRANTY. (2) No warranty is made hereby. Products described herein are warranted to conform to our specifications only at the time of sale. All sales are subject to Cellular Concrete Solutions’ standard terms and conditions, which are reproduced on the reverse side of each invoice. ALL WARRANTIES OF MERCHANTABILITY AND FITNESS ARE DISCLAIMED. (3) Cellular Concrete Solutions assumes no responsibility for any patent liability arising from the use of any product in a process, manner or formula not designed by Cellular Concrete Solutions. Nothing in the listed information shall be construed as an inducement or recommendation to use any process or to produce or use any product in conflict with existing or future patents.

For more information on the use of Geofoam low-density cellular concrete, contact:

Cellular Concrete Solutions™
Mearlcrete Division
7202 Snowdrift Road, Suite 102
Allentown, PA 18106
Tollfree 888-235-5015
Tel 610-398-7833
Fax 610-398-7050
Email: info@cellular-concrete.com
Website: www.cellular-concrete.com

Cellular Concrete Solutions™ seeks to present reliable information concerning the composition, properties and use of its products; however: (1) all advice concerning selection and use of any product is provided AT NO CHARGE AND WITH NO WARRANTY. (2) No warranty is made hereby. Products described herein are warranted to conform to our specifications only at the time of sale. All sales are subject to Cellular Concrete Solutions’ standard terms and conditions, which are reproduced on the reverse side of each invoice. ALL WARRANTIES OF MERCHANTABILITY AND FITNESS ARE DISCLAIMED. (3) Cellular Concrete Solutions assumes no responsibility for any patent liability arising from the use of any product in a process, manner or formula not designed by Cellular Concrete Solutions. Nothing in the listed information shall be construed as an inducement or recommendation to use any process or to produce or use any product in conflict with existing or future patents.
Mearl Geofoam
Low-Density Cellular Concrete

Cellular Concrete Solutions® makes the task of adding lasting load reduction easy and quick with Mearl Geofoam® low-density cellular concrete—an effective combination of our advanced Geofoam foaming agent and cement slurry. Cellular Concrete Solutions® focuses on providing solutions to challenging problems, offering technical and application support, and formulating the use of cellular concrete to your specific project.

Geofoam cellular concrete reduces soil loading while increasing compressive and shear strength. It is an engineered geotechnical material containing uniformly distributed air voids. In its rigid form, it can be thought of as concrete having air as the aggregate. Its density can be varied from 20 to 120 lb./cu. ft., and its compressive strength from 20 to 3000 psi.

Meeting Diverse Needs
Mearl Geofoam® cellular concrete has been used throughout the United States and around the world for more than 50 years. It has provided permanent solutions for a broad range of geotechnical needs on hundreds of projects, including:

- **Bridge load relief for Logan Bridge in Boston, MA.** To reduce the downdrag on the pier, Mearl Geofoam cellular concrete was used on 15,000 cu. yd. of earth and replaced with the cellular concrete and the supermarket in Northampton on relatively weak, compressible soil, the contractor removed 15,000 cu. yd. of earth and replaced with Geofoam cellular concrete to a depth of eight feet to avoid net pressure increase. The pier structure, which dates to 1901, had threatened to cause structural failure because of additional foundation loading. The pier area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.

- **Load reduction on Sydney Bulkheads of Pier 12 in Brooklyn.** The pier structure, which dates to 1901, had threatened to cause structural failure because of additional foundation loading. The pier area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.

- **Load reduction in Boston, MA.** Renewal of Commonwealth Pier to accommodate mechanical and electrical equipment required an extremely lightweight concrete great that could be pumped long distances. They selected Geofoam cellular concrete in two high-output, continuous mixing and pumping plants.

- **Highway stabilization in Oakland, CA.** About 3,000 linear foot of the Cypress Replacement Project, a forming slab to replace the historic bridge that carried traffic over the San Francisco earthquake. The pier structure, which dates to 1901, had threatened to cause structural failure because of additional foundation loading. The pier area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.

- **Bridge load relief at Examination Area 5, Boston, MA.** The first ever passing coming out of the Ted Williams Tunnel. The pier structure, which dates to 1901, had threatened to cause structural failure because of additional foundation loading. The pier area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.

- **Bridge load relief at Examination Area 5, Boston, MA.** The first ever passing coming out of the Ted Williams Tunnel. The pier structure, which dates to 1901, had threatened to cause structural failure because of additional foundation loading. The pier area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.

- **Rearrangement to Pier 12 in Brooklyn, NY.** After the steel I-beam bulkheads of Pier 12 in Brooklyn were repaired to counter the effects of corrosion, the area was backfilled with low-density cellular concrete to reduce downdrag at pier 12.
Mearl Geofoam®
Low-Density Cellular Concrete

Quick, Permanent
Load Reduction

Cellular Concrete Solutions make the task of adding long-lasting load reduction easy and quick with Mearl Geofoam® low-density cellular concrete—an effective combination of our advanced Geofoam forming agent and cement slurry. Cellular Concrete Solutions focus on providing solutions to challenging problems, offering technical and application support, and formulating the use of cellular concrete to your specific project. Geofoam cellular concrete reduces soil loading while increasing compressive and shear strength. It is an engineered geotechnical material containing uniformly distributed air voids. In its stabilized form, Geofoam cellular concrete has a density of up to 30 pounds per cubic foot, which reduces loading by about 100 lb./ft. 3 of soil. The material can be mixed on site or purchased ready to place for a variety of site applications. The combination of Geofoam liquid cement, water and compressed air is produced continuously or in batches by a foam generator calibrated to produce the right amount of foam for the density desired. The foam is the last ingredient added to the mixer and does not expand or contract after addition. The foam is the correct volume necessary to stabilize the subsoil bore little additional load. It can withstand vigorous mixing and has been pumped well over a mile with little loss of cellular structure. It can be installed at rates of more than 100 cu. ft./hr. at low cost, high productivity, and typically sets in the same time as normal concrete.

Geofoam concrete can be made on site or purchased ready to place for use in a variety of site applications. The combination of Geofoam liquid cement, water, and compressed air is produced continuously or in batches by a foam generator calibrated to produce the right amount of foam for the density desired. The foam is the last ingredient added to the mixer and does not expand or contract after addition. The foam is the correct volume necessary to stabilize the subsoil bore little additional load. It can withstand vigorous mixing and has been pumped well over a mile with little loss of cellular structure. It can be installed at rates of more than 100 cu. ft./hr. at low cost, high productivity, and typically sets in the same time as normal concrete.

Geofoam concrete can be made on site or purchased ready to place for use in a variety of site applications. The combination of Geofoam liquid cement, water, and compressed air is produced continuously or in batches by a foam generator calibrated to produce the right amount of foam for the density desired. The foam is the last ingredient added to the mixer and does not expand or contract after addition. The foam is the correct volume necessary to stabilize the subsoil bore little additional load. It can withstand vigorous mixing and has been pumped well over a mile with little loss of cellular structure. It can be installed at rates of more than 100 cu. ft./hr. at low cost, high productivity, and typically sets in the same time as normal concrete.

Meeting Diverse Needs

Mearl Geofoam® cellular concrete has been used in California to meet both requirements. About 8,300 linear feet of geotechnical needs on hundreds of projects, making it an effective combination of our advanced Geofoam forming agent and cement slurry. Cellular Concrete Solutions focus on providing solutions to challenging problems, offering technical and application support, and formulating the use of cellular concrete to your specific project. Geofoam cellular concrete reduces soil loading while increasing compressive and shear strength. It is an engineered geotechnical material containing uniformly distributed air voids. In its stabilized form, Geofoam cellular concrete has a density of up to 30 pounds per cubic foot, which reduces loading by about 100 lb./ft. 3 of soil. The material can be mixed on site or purchased ready to place for a variety of site applications. The combination of Geofoam liquid cement, water and compressed air is produced continuously or in batches by a foam generator calibrated to produce the right amount of foam for the density desired. The foam is the last ingredient added to the mixer and does not expand or contract after addition. The foam is the correct volume necessary to stabilize the subsoil bore little additional load. It can withstand vigorous mixing and has been pumped well over a mile with little loss of cellular structure. It can be installed at rates of more than 100 cu. ft./hr. at low cost, high productivity, and typically sets in the same time as normal concrete.

Geofoam concrete can be made on site or purchased ready to place for use in a variety of site applications. The combination of Geofoam liquid cement, water, and compressed air is produced continuously or in batches by a foam generator calibrated to produce the right amount of foam for the density desired. The foam is the last ingredient added to the mixer and does not expand or contract after addition. The foam is the correct volume necessary to stabilize the subsoil bore little additional load. It can withstand vigorous mixing and has been pumped well over a mile with little loss of cellular structure. It can be installed at rates of more than 100 cu. ft./hr. at low cost, high productivity, and typically sets in the same time as normal concrete.

Meeting Diverse Needs

Mearl Geofoam® cellular concrete has been used throughout the United States and around the world for more than 50 years. It has provided permanent solutions for a broad range of geotechnical needs on hundreds of projects, including:

- **Eliminating Rail/Highway Settling in Jersey City, NJ.** Geofoam cellular concrete prevented ground settlement at a light rail transit system passing beneath the New Jersey Turnpike in Jersey City. The city standard embankment rests on compressible clay soil. Downdrag loads on the turnpike foundations were eliminated by reducing strength with 4,000 psi of lightweight concrete thereby avoiding net pressure increase: A Kansas Department of Transportation MA. SUPERHARD®, in order to construct a 7,000-ft. Super Stop and Shop expansion in North Hampton, N.H., the contractor introduced 15,000 cu. yd. of earth and replaced it with Geofoam cellular concrete. The weight of the cellular concrete and the supermarket building (structure, equipment, goods and supplies) approximated that of the soil removed, but the subsoil bore little additional load.

- **Highway Stabilization in Oakland, CA.** About 4,000 linear feet of the Cypress Project Replacement, a former subway to replace an old structure, was constructed on relatively rock or concrete, which avoided any expensive foundation work. Geofoam cellular concrete was chosen to provide the needed load relief. Contractors poured 110,000 cu. yd. of Geofoam cellular concrete in a layer about 2.5 feet thick beneath roadways and in thicknesses up to eight feet at bridge approaches. The volumetric weight of the cellular concrete had an averaged strength of 150 psi and an average density of 26 to 30 lb./cu. ft. Typical or standard RL would have weighed about 120 lb./cu. ft.

- **Tunnel filling in Brookline, MA.** In constructing the 30,000 cu. ft. Los Angeles North South Sidewalk Replacement tunnel, engineers needed an extremely lightweight cellular concrete great that could be pumped long distances. They selected Geofoam cellular concrete to meet both requirements. About 86,000 cu. yd. of Geofoam cellular concrete was used in tunneling the inside 3½ ft. from the temporary tunnel support to the central 150-in. diameter, professional concrete cylinder pipes for meeting the set specifications, created a special mix (80% air) that produces both compressive strength and a weight just 20% that of conventional concrete). Geofoam Solutions™ offers special equipment for high-volume, continuous mixing and pumping, keeping throughput at a rate of 100 cu. yd. per hour at distances of 18,000 ft.

- **Load reduction in Boston, MA.** In transferring the radial soil load from the shoulder to the roadway, 84,000 cu. yd. of cellular concrete was used on either side of the span. This amount of standard RL would have moved more than two feet of earthworm, and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psf for each foot of replaced depth.

- **Bridge load relief at Sacred Heart, Austin, Boston, MA.** The foot overpass coming out of the Tunnel Williams foot under the Boston Bridge is 150 ft. long. Tropical materials, filled to a total of 30,000 cu. yd. of 12,000 psi reinforced concrete slab on grade. The bridge was placed on the ground to avoid the threat of excessive foundation loading. The soil had to meet both requirements. About 86,000 cu. yd. of Geofoam cellular concrete was used in tunneling the inside 3½ ft. from the temporary tunnel support to the central 150-in. diameter, professional concrete cylinder pipes for meeting the set specifications, created a special mix (80% air) that produces both compressive strength and a weight just 20% that of conventional concrete). Geofoam Solutions™ offers special equipment for high-volume, continuous mixing and pumping, keeping throughput at a rate of 100 cu. yd. per hour at distances of 18,000 ft.

- **Load reduction in Boston, MA.** In transferring the radial soil load from the shoulder to the roadway, 84,000 cu. yd. of cellular concrete was used on either side of the span. This amount of standard RL would have moved more than two feet of earthworm, and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psf for each foot of replaced depth.

- **Bridge load relief at Sacred Heart, Austin, Boston, MA.** The foot overpass coming out of the Tunnel Williams foot under the Boston Bridge is 150 ft. long. Tropical materials, filled to a total of 30,000 cu. yd. of 12,000 psi reinforced concrete slab on grade. The bridge was placed on the ground to avoid the threat of excessive foundation loading. The soil had to meet both requirements. About 86,000 cu. yd. of Geofoam cellular concrete was used in tunneling the inside 3½ ft. from the temporary tunnel support to the central 150-in. diameter, professional concrete cylinder pipes for meeting the set specifications, created a special mix (80% air) that produces both compressive strength and a weight just 20% that of conventional concrete). Geofoam Solutions™ offers special equipment for high-volume, continuous mixing and pumping, keeping throughput at a rate of 100 cu. yd. per hour at distances of 18,000 ft.

- **Load reduction in Boston, MA.** In transferring the radial soil load from the shoulder to the roadway, 84,000 cu. yd. of cellular concrete was used on either side of the span. This amount of standard RL would have moved more than two feet of earthworm, and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psf for each foot of replaced depth.
Taking samples of Geofoam
Mearl Geofoam
Low-Density Cellular Concrete

Quick, lasting load reduction quick and easy with Mearl Geofoam® low-density cellular concrete — an cellular Concrete Solutions™ makes the task of adding long-Geofoam cellular concrete reduces soil loading while increasing compressive and shear strength.

and application support, and formulating the use of cellular concrete to your specific project. Cellular Concrete Solutions focuses on providing solutions to challenging problems, offering technical effective combination of our advanced Geofoam foaming agent and cement slurry. Cellular It is an engineered geotechnical material containing uniformly distributed air voids. In its rigid form, it can be thought of as concrete having air as the aggregate. Its density can be varied from 20 to 120 lb./cu. ft., and its compressive strength from 20 to 3000 psi.

Formed Rapidly On Site

Meeting Diverse Needs
Mearl Geofoam cellular concrete has been used throughout the United States and around the world for more than 50 years. It has provided permanent solutions for a broad range of geotechnical needs on hundreds of projects, including:

- Élimination de la file entre deux péniches on the Northampton, MA supermarket in Northampton on relatively-Geofoam cellular concrete was used to repair the pier at Pier 12 in Brooklyn, NY. The pier structure, which dates to 1901, had suffered more than two feet of settlement because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area was backfilled with low-density just outside of Boston’s Logan International Airport with 11 feet of Geofoam cellular concrete. The concrete greatly reduced the weight of the over-110,000 cu. yd. of Geofoam cellular concrete was used to backfill the 150-inch-diameter, prestressed concrete temporary tunnel supporter to the central 150 ft between two pier supports.

- Load reduction in Boston, MA. Renovations to Commonwealth Pier 12 threatened to cause structural failure-just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.

- Load reduction at Logan Airport, Boston, MA. The pier structures at Pier 12 in the Ted Williams Tunnel on just outside of Boston’s Logan International Airport with 11 feet of Geofoam cellular concrete to reduce down-drag at pier 12—just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.

- Load reduction at Logan Airport, Boston, MA. The pier structures at Pier 12 in the Ted Williams Tunnel on just outside of Boston’s Logan International Airport with 11 feet of Geofoam cellular concrete to reduce down-drag at pier 12—just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.

- Load reduction in Boston, MA. Renovations to Commonwealth Pier 12 threatened to cause structural failure-just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.

- Load reduction in Boston, MA. Renovations to Commonwealth Pier 12 threatened to cause structural failure-just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.

- Load reduction in Boston, MA. Renovations to Commonwealth Pier 12 threatened to cause structural failure-just outside of Boston’s Logan International Airport need 11 feet of soil with 78,000 cu. yd. of Geofoam cellular concrete because of additional foundation loading. The threat of excessive foundation loading was eliminated by filling the area with Geofoam cellular concrete. The concrete greatly reduced the weight of the over-load and increased resistance to lateral movement. The cellular concrete also allowed additional loading of up to 70 psi for each foot of replaced depth.
Mearl Geofoam®
Low-Density Cellular Concrete Solutions
For Geotechnical Construction

Determing the proper mixture of cement, water and foam to insure quality

Mearl Geofoam®
Range

For more information on the use of Geofoam low-density cellular concrete . . . contact:

• Replaces unstable soil to reduce subsidence of roadways, bridge ramps, buildings and other structures.
• Backfill (subaqueous) for tunnels, water lines and sewers.
• Provides shock absorption in earthquake zones (cellular concrete is recommended by the U.S. Bureau of Reclamation in fault zones).
• Reduces loads above underground structures.
• Fills voids within silos, abandoned mines, underground tanks and pipelines.
• Reduces hydrostatic pressure on retaining walls.

For Lighter: High slump (virtually self-leveling)
Broad range of densities and compressive strengths
Excellent freeze-thaw resistance
Low water absorption and low permeability
Insulating
Perbsous Mearl Geofoam also available

Provides insulation (perm rating up to 8000 psf)
Reduces vibrations
Economical load reduction versus unstable soil
Long-lasting and stable
Pieces easily by pump or gravity
Positive fill (flows to fill all spaces available)
Absorbs shock waves

Total Technical Support
Cellular Concrete Solutions supports the use of Geofoam cellular concrete with a full range of formulating and application services. Our experts work closely with engineers and contractors to help them ensure that each cellular concrete installation is properly designed and executed. This includes preparing trial batches of mixes meeting a contractor’s stated specifications, and advising or modifying the equipment that processes the cellular concrete. Training of specially-trained concrete subcontractors and job site crews helps ensure that placements go smoothly.

Benefits

Mearl Geofoam®
Features

Lightweight
High slump (virtually self-leveling)
Broad range of densities and compressive strengths
Excellent freeze-thaw resistance
Low water absorption and low permeability
Insulating
Perbsous Mearl Geofoam also available

Cellular Concrete Solutions™ seeks to present reliable information concerning the composition, properties and use of its products; however: (1) all advice concerning selection and use of any product is provided AT NO CHARGE AND WITH NO WARRANTY. (2) No warranty is made hereby. Products described herein are warranted to conform to our specifications only at the time of sale. All sales are subject to Cellular Concrete Solutions’ standard terms and conditions, which are reproduced on the reverse side of each invoice. ALL WARRANTIES OF MERCHANTABILITY AND FITNESS ARE DISCLAIMED. (3) Cellular Concrete Solutions assumes no responsibility for any patent liability arising from the use of any product in a process, manner or formula not designed by Cellular Concrete Solutions. Nothing in the listed information shall be construed as an inducement or recommendation to use any process or to produce or use any product in conflict with existing or future patents.

©1999, 2010 Cellular Concrete Solutions

BR-101-0110

Cellular Concrete Solutions TM
Martcrete Division
7900 Market Blvd, Suite 300
Allentown, PA 18102
Tollfree: 888-235-5015
Tel: 610-398-7833
Fax: 610-398-7050
Email: info@cellular-concrete.com
Website: www.cellular-concrete.com

Cellular Concrete Solutions™ uses trademarked Reliable Information concerning the composition, properties and use of its products. Keep out of reach of children. If swallowed, see a physician. Never attempt to consume any part of any product or product from any product. All trademarks are the property of Cellular Concrete Solutions. No license or right, express or implied, is hereby granted to any trademark, trade name or service mark contained herein.
Mearl Geofoam®
Low-Density Cellular Concrete Solutions

Features
- Lightweight
- High slump (virtually self-leveling)
- Broad range of densities and compressive strengths
- Excellent freeze-thaw resistance
- Low water absorption and low permeability
- Insulating
- Porous Mearl Geofoam also available

Benefits
- Provides insulation (can contain up to 80% air)
- Rapid consolidation
- Economical load reduction versus conventional silo backfill
- Long-lasting and stable
- Piles easily by pump or gravity
- Positive fill (flows to fill all spaces available)
- Absorbs shock waves

Total Technical Support
Cellular Concrete Solutions supports the use of Geofoam cellular concrete with a full range of formulating and application services.

Range of uses
- Replaces unstable soil to reduce subsidence of roadways, bridge piers, buildings and other structures.
- Backfill (sewerage pits) for tunnels, water lines and sewers.
- Provides shock absorption in earthquake zones (cellular concrete is recommended by the U.S. Bureau of Reclamation in fault zones).
- Reduces loads above underground structures.
- Fills voids within silos, abandoned mines, underground tanks and pipelines.
- Reduces hydrostatic pressure on retaining walls.

For more information on the use of Geofoam low-density cellular concrete, contact:
Cellular Concrete Solutions™
Mearlite Division
7020 Snowdrift Road, Suite 102
Allentown, PA 18106
Tollfree: 888-235-5015
Tel: 610-398-7833
Fax: 610-398-7050
Email: info@cellular-concrete.com
Website: www.cellular-concrete.com

Cellular Concrete Solutions™ seeks to present reliable information concerning the composition, properties and use of its products; however: (1) all advice concerning selection and use of any product is provided AT NO CHARGE AND WITH NO WARRANTY. (2) No warranty is made hereby. Products described herein are warranted to conform to our specifications only at the time of sale. All sales are subject to Cellular Concrete Solutions’ standard terms and conditions, which are reproduced on the reverse side of each invoice. ALL WARRANTIES OF MERCHANTABILITY AND FITNESS ARE DISCLAIMED. (3) Cellular Concrete Solutions assumes no responsibility for any patent liability arising from the use of any product in a process, manner or formula not designed by Cellular Concrete Solutions. Nothing in the listed information shall be construed as an inducement or recommendation to use any process or to produce or use any product in conflict with existing or future patents.

Mearl Geofoam
Low-Density Cellular Concrete Solutions
For Geotechnical Construction